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The linear stability of the flow of an incompressible viscous fluid through a curved 
pipe of circular cross-section is considered. There is a sinusoidal pressure gradient, 
with zero mean, acting down the pipe. The flow is shown to be unstable to a 
Taylor-Gortler mode of instability, with vortices aligned with the basic flow first 
appearing a t  the outer bend of the pipe when a critical value of the Taylor number 
is exceeded. A WKBJ perturbation solution is constructed and the form of the vortex 
amplitude is determined. This solution is found to break down in the vicinity of the 
pipe’s outer bend, and an inner solution is presented to overcome this. The solution 
is determined by identifying a saddle point in the complex plane of the cross-sectional 
angle coordinate. This leads to an eigenvalue problem for the Taylor number, for fixed 
wavenumber and cross-sectional angle coordinate, which in turn leads to the 
determination of the critical Taylor number above which instability sets in. 

1. Introduction 
The stability of periodic laminar flows forms an important part of fluid dynamics, 

both from a mathematical and a physical point of view. Such flows occur frequently 
in nature and one such example, related to this work, is blood flow in large arteries. 

Periodic laminar flows can be divided into those modulated about some non-zero 
mean, and purely oscillatory ones, depending on the problem at hand. The methods 
used to analyse such flows are also different. For instance, when modulation is 
present, the instability is often associated with the mean flow, and the stability 
parameters depend on the unperturbed flow characteristics. This means that, in many 
cases, perturbation methods can be used to describe the instability. Some examples 
can be found in Grosch & Salwen (1968), Hall (1975~)  (where the stability of 
modulated plane Poiseuille flow is considered) and Hall (1975b)) Riley & Lawrence 
(1976) (where the stability of modulated circular Couette flow is described by 
asymptotic and numerical methods, respectively). For a review of the stability of 
periodic flows see Davis (1976). 

In the case of purely oscillatory flows, however, perturbation methods can no 
longer be applied in general, and numerical solutions are usually needed to resolve 
the stability problem. Rosenblat (1968) studied the instability of purely oscillatory 
cylinder flows, set up by the motion of an incompressible inviscid fluid between 
concentric infinite cylinders. Instability is found which is associated with a phase lag 
between velocity and vorticity. With viscosity present, however, Stokes layers are 
formed at solid surfaces, and an understanding of their stability mechanisms is 
needed. Stokes layers can be found, for example, at the pipe walls in the problem 
studied here, a t  the boundary of a cylindrical body oscillating along a diameter 
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(Stuart 1966; Riley 1967), and at  the bottom of a channel over which a gravity wave 
is propagating (Longuet-Higgins 1953). 

Stability properties of Stokes layers depend on their local geometry. For example, 
different mechanisms, such as centrifugal effects, come into play in a curved Stokes 
layer, but not in a flat one. The stability of the Stokes layers on the walls of the flow 
between parallel plates when one of the plates oscillates harmonically in time, has 
been calculated by von Kerczek & Davis (1974). Hall (1978) analysed flat Stokes layer 
stability both in the absence and presence of an upper rigid boundary. Von Kerczek 
& Davis find linear stability (for evolution of disturbances over a cycle) for Reynolds 
numbers, based on Stokes layer thickness, of up to about 800. It is also conjectured 
that the flow remains linearly stable at higher Reynolds numbers. Tromans (1977) 
and Cowley (1986) have shown by a quasi-steady analysis that for large Reynolds 
numbers, Stokes layers are locally unstable to Rayleigh modes (inflexional insta- 
bilities). Some experiments are cited by Cowley in support of this mechanism. It 
is interesting to note, however, that for Stokes layers which include centrifugal or 
stratification effects, Floquet-theory stability analysis is in very good agreement with 
experiments (see Seminara & Hall (1976) and von Kerczek & Davis (1976) 
respectively). An explanation for this is presented by Cowley (1986) for the problem 
of Seminara & Hall. 

Our concern is with flows in curved geometries that exhibit centrifugal instability. 
Of interest, therefore, is the work of Seminara 6 Hall cited above, where they 
investigate the linear stability of the Stokes layer found on an infinite cylinder that 
oscillates harmonically about its axis in an unbounded viscous fluid. The streamlines 
inside the Stokes layer are curved, and instability sets in as azimuthal Taylor vortices 
which are periodic in the axial direction. It should be noted that the undisturbed flow 
in the above problem has a component in the azimuthal direction alone and is a 
function of the radial distance from the axis. Hall (1984) investigated the boundary- 
layer stability on a transversely oscillating cylinder. The basic flow now has 
components in two spatial directions (no component parallel to the cylinder axis). 
The flow is shown to be locally unstable to  Taylor vortices, which form at positions 
where the Stokes layers are parallel to the direction of motion of the cylinder. It is 
further conjectured that such instabilities can be found in more complicated 
streaming flows and the analysis is extended to the motion of an elliptical cylinder. 

The study undertaken here is more complicated than previous ones, in that the 
underlying flow is three-dimensional. It comprises the main motion down the pipe 
and a two-dimensional secondary flow in the pipe cross-section. This property makes 
it hard to classify the instability as either of the Taylor- or of the Gortler-vortex type, 
but some comparisons can be made towards an understanding of the physical 
mechanisms involved. 

The structure of the flow field near the walls can be of considerable practical 
importance. If, for instance, our model is taken to represent blood flow in large 
arteries, then the instability can affect the shear-stress distribution at the walls and 
hence the uptake of lipoproteins, deposition on the walls and perhaps the onset of 
atheroma. 

A detailed asymptotic analysis of the fully developed unperturbed flow in a curved 
pipe, under the action of a sinusoidal pressure gradient, was first given by Lyne 
(1971). It is assumed that 6, the ratio of the pipe radius to its curvature, is small, 
and the two parameters 

~=!!(zy, R =-- P a  a w R  ' Rwv'  
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are found for the problem. Here W is a typical velocity down the pipe, w is the 
frequency of oscillation of the basic flow, a the radius of the pipe, R its radius of 
curvature and v the kinematic viscosity of the fluid. The parameter e2 represents the 
ratio of the square of the oscillation amplitude of particles in the core down the pipe, 
to the product of the pipe radius and its radius of curvature. This parameter is taken 
to be small in the regime studied here. R, is the Reynolds number for the secondary 
flow based on the pipe radius. Another important parameter is /3, given by 

2v 2s2 
a2w R, 

$=-=- 

Physically /3 represents the ratio of the Stokes-layer thickness (2v/o)4 to the pipe 
radius. Lyne’s analysis depends on /3 being small, which implies that viscous effects 
are confined to a thin layer on the wall. The influence of the parameter /3 on biological 
flows was recognized by Womersley (1955). 

We are concerned with the evolution of disturbances inside the Stokes layer, where 
the curvature of the streamlines is of order R. Thus, a Taylor number Ta can be 
defined in the usual way, 

Here we require that Ta is an order-one parameter, in order to produce centrifugal 
instability of the Taylor-vortex type. We choose R, = 2TB-l (Tu = 4T now), in which 
case the problem is reduced to depend on one small parameter /? and an order-one 
parameter T ,  by the substitution e2 = /3T which follows from above. 

We note here, that the Taylor number for the secondary flow is proportional to 
( W 2 / R w ) 2 ( v / ~ ) l / a ~ 2  = /3Tu2/2/2, and is therefore much smaller than the Taylor 
number for the axial flow. Physically, therefore, we anticipate that vortices will be 
formed aligned with the flow down the pipe and with characteristic wavenumbers 
scaled on the Stokes-layer thickness. 

It follows that in the construction of asymptotic solutions two lengthscales, O( 1 )  
and 0(/3), become important in the cross-section plane. The perturbation solutions 
can be expanded in powers of /3 and a WKBJ method can be used. Such a procedure 
was adopted by Walton (1978) in his stability investigation of the steady flow in a 
narrow spherical annulus. He found that the solution becomes singular near the 
equator, which suggests the need for an inner expansion. Some difficulties arise, 
however, in connection with the inner-solution behaviour away from the equator. 
Soward & Jones (1983) resolved the problem by identification of the value of T for 
which the inner solutions behave correctly away from the equator. This method is 
modified here for the more complicated unsteady basic flow at hand. 

The procedure adopted in the rest of the paper is as follows. In  $ 2  the unperturbed 
flow, and in particular that inside the Stokes layer, is described. In  $3  the 
linear-stability problem is formulated and in $4 an analytical solution in the 
neighbourhood of the outer bend (the analysis takes the same form at the inner bend) 
is obtained as a power series in 8. This solution is found to break down in the 
immediate vicinity of the outer bend. In  $5 an inner solution is described by 
identification of the correct Taylor number for the flow. In  $6 a numerical solution 
is presented that calculates the neutral stability curve of T ,  and in $7 we give the 
results and make some comments. 
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FIGURE 1. The coordinate system. 

2. The basic flow 
The velocity vector u is taken to have components (u, v, w) which correspond to 

the spatial coordinates (7,8,q5), where r and 8 are polar coordinates in the pipe 
cross-section and R$ denotes distance down the pipe ; u is assumed to be independent 
of q5 when the basic flow is fully developed. The coordinate system is shown in figure 1.  

If the Navier-Stokes equations are considered in the above coordinate system, 
together with a sinusoidal pressure gradient in the $-direction of the form 

-_-- a - RWw cosot, 
aq5 P 

then a balance of viscous and pressure terms implies that there exists a layer of 
thickness 0(2v/w)t where viscous effects are dominant, with a potential flow in the 
core. Similar balances in the r- and 8-momentum equations yield that inside the 
viscous layer, v = O( V I R w )  and u = O( W2P/Rw).  Following Lyne we non- 
dimensionalize u and v with respect to W2/Rw and w with respect to W .  The radial 
distance is non-dimensionalized with respect to a,  the time t with respect to 
w-' ( t  = W T )  and the pressure with respect to p ( a / R )  V. The system of equations 
obtained gives a general description of the viscous flow both near the wall and in the 
core of the pipe. These equations are 

1 
v,+e2 

(2 . lc )  

( 2 . 1 4  
1 1  
7 r  

u, +-u+-v, = 0. 
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It can be seen that the continuity equation (2.1 d )  is satisfied by the introduction of 
a stream function +, with the velocities u ,  v given by 

We are interested in the appearance of instability near the walls, and more specifically 
inside the Stokes layer which has thickness (2v/o)$P. A scaling of r and + inside the 
Stokes layer is therefore necessary ; these scalings are 

7 = P-l(l - r ) ,  Y = P-l+, 
where the new variables 7,  Y are the radial coordinate and stream function, 
respectively, inside the Stokes layer. The solution for the basic flow inside the Stokes 
layer is given by Lyne as a series expansion in /3. This is 

Y =  Y O + ~ Y 1 + $ Y ~ +  ..., (2.24 

W = W B o + P W B l + . . .  . (2.2b) 

I n  (2.2a,b) above, Yo, Yl, ..., wB0, .. ., are functions of 7 ,  7 and 8 which must be 
calculated for fixed values of the secondary Reynolds number R,. In particular Lyne 
obtains asymptotic solutions as B-+O for both R, + O  and R,+ 00. As was concluded 
in the introduction, for the type of centrifugal instability considered here, the latter 
limit must be taken (in fact the limit R, = 2TP-l is needed as P + O ) .  The solutions 
for Yo, Yl as R, +. co are (see Lyne 1971), 

Yo = f(7,7) sin 8, 
where 

1 
e-9 cos (27 - 7 +in) + &(91/2 - 10) cos (27 + in)}, -- 

4 2  

yl = {-A427 e-'7 cos(27-27+$)-&e-'~ cos(27-27)-+1/27 

x e-7 cos (27 - 7 +in) +a e-7 cos (27- 7) +& e-4'7 cos (27- 1/27 +in) 
-&16d2-15)e-d2v cos(27-d27)-~a.\/2 e-'' cos(-7++n) 

+ie-"  C O S ~ + +  18 e-27-$e-27-&(91/2-10)q cos(27+3c) 

+ ih + &( 161/2 - 21 ) cos 27 - $1 sin 6' + q21(6'). (2.4) 

In  (2.4) above I ( 8 )  is a function of 8 that is determined by the matching of the 
Stokes-layer solution with the core flow in the limit R, + co. 

The first two terms in the expression for w are 
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expressions holding : 
Hence if the basic flow is denoted by uB = (uB,vB,wB), we have the following 

UB = P U B O + P ~ U B ~ + . . . ,  

VB = V B ~ + / ? V B ~  +. . . , 
where 

uBo = aul,/ae, uB1 = ayl/ae, vBo = aq , /aq ,  vBl = aul,/aq. 

It should be noted here that the solutions given above are strictly valid in the limit 
R,+ 00 with /3 held fixed. We are interested, however, in the basic flow in the special 
limit R, = 2TP-l as p+O. This poses no difficulties because the effect of R, is not 
explicit in the Stokes-layer equations for Yo, Y1, wB0, wB1 at least, but affects the 
flow in the core, where it takes on the role of a conventional Reynolds number. The 
expressions (2.3)-(2.6) are therefore valid representations of the basic flow as P + O  
in the regime of instability under consideration. 

3. Formulation of the linear stability problem 
Before the stability problem is posed we present the equations of motion inside 

the Stokes layer. These are equations (2.1) written in terms of the Stokes variable q .  
Thus, 

1 

( 3 . 1 ~ )  

(3 . ld)  

A small disturbance is now introduced to the basic flow inside the Stokes layer. Thus 
the total flow becomes 

(u,v,w,P) = (~g,~g,wgtpg)+81(C,v"u", c,ij), 
where el is a vanishing small parameter. Substitution into (3.1 u-d) and linearization 
with respect to el yields the following system that governs the evolution of 
disturbances inside the Stokes layer: 

1 1 ) = cos 7 + $2 [ p w,,,,-- w,, + wee], 
1 

P 
W,+€2 ( -- puw,+Vwe 

1 
--u,,+u+vB = 0. 

P 

, ( 3 . 2 ~ )  

1 
--C7+C+v"B = 0. (3.2d) 

P 
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The boundary conditions appropriate to the disturbance are those of no slip a t  the 
wall, 7 = 0, and that the disturbance vanishes as 7 + a. The expression c2 = PT has 
also been used. 

It can be seen from (3.2a-d) above, that terms involving &derivatives are smaller 
(0(/3)) than those involving T and 7 derivatives and so the 6 variations are 
comparatively slow. Thus a WKBJ multiple scales approach can take account of this, 
and we consider disturbances of this form next. 

Solutions are sought, of the form 

where C.C. denotes complex conjugate and the perturbed quantities ill, C1, GI, pi, etc. 
are functions of 6 , 7 ,  7 .  Also, E is given by 

E = exp(i/3-'Jek(B')d6'). 

In the expression for E the lower limit of integration can be freely chosen; the form 
of the exponent of the exponential implies that we are looking at disturbances with 
wavenumbers in the &direction corresponding to wavelengths of order 1, i.e. the 
wavelengths are of the order of the Stokes-layer thickness. Such a regime is physically 
realistic, since it implies that the vortices have roughly square cross-section and are 
embedded inside the Stokes layer. 

The Taylor number T expands in powers of p as follows, 

T = T,+PT,+p2T,+..., (3.4) 

and T, is taken to be the critical Taylor number of neutral stability. 
It should be noted that in the stability problem just posed, disturbances which are 

independent of 4 are considered, which means that the vortex amplitudes do not vary 
as we move down the pipe. Previous investigators (see Seminara & Hall 1976) have 
found disturbances of this form to provide the most unstable linear modes. There is 
however the possibility of the local inflexional instabilities found by Tromans (1979), 
and Cowley (1986) by quasi-steady analyses (the Stokes-layer Reynolds number for 
our problem is W ( v / w ) i  which is proportional to (&?)-i % 1) .  As these modes will not 
necessarily be observed in practice and owing to evidence that centrifugal Stokes 
layers have instability characteristics which are well described by Floquet theory (see 
introduction, and Cowley 1986) we choose to concentrate on the latter form of 
instability. 

A feature that emerges due to the unsteadiness of the basic flow (see also Hall 1984) 
is that the problem does not exhibit the classical Gortler type of instability, where 
the flow is stable or unstable depending on whether the local geometry is convex or 
concave respectively. On the contrary, as the analysis in the following section shows, 
instability is found on both the inner and outer bends. Although this might seem a 
little surprising at first, it is in fact consistent with the inviscid limit of the flow. When 
the inviscid limit is taken, the Taylor number T-too and it can be seen from the 
definition of T that the Reynolds number for the flow in the &direction (based on 
Stokes-layer thickness) also becomes infinite (in fact T - $/v where V is typical 
velocity in the &direction). The timescale becomes very short ( - T 2 )  which implies 
that the problem reduces to a quasi-steady Taylor problem. 

Expansions can be set up in powers of T-4 and substituted into the governing 
equations to obtain the inviscid-limit behaviour of the disturbances. We do not 



216 D.  Papageorgiou 

present this analysis here, but instead provide a physical argument for the appearance 
of instability on both inner and outer bends. It can be seen that as T+ co the main 
component of the flow is down the pipe. If Rayleigh's centrifugal instability criterion 
(cf. Drazin & Reid 1981) is applied to this flow, it is found that there is instability 
in the inviscid limit a t  both the outer and inner bends. 

4. Stability problem in the limit p + O  
Substitution of the expressions (3.3), (3.4) into the governing perturbation 

equations ( 3 . 2 ~ 4 )  defines the stability equations for the disturbance quantities a t  
successive powers of 8. It is convenient to introduce the vector 

to represent perturbation quantities at successive orders in p. Here and in the rest 
of the paper a superscript T denotes the transpose of a vector or matrix. The 
governing equations a t  different orders in p can therefore be written in vector form 
(as in Eagles 1971 for example) and the two leading-order problems are 

In (4.1), (4.2) above, I is the identity matrix of size 6 x 6 and A, B are the 6 x 6 
matrices given by 

A =  

B =  

-0 0 0 - 1  0 
0 0 0 ; -5 -E] 
0 0 0  
0 0 0  0 0 0 
0 0 0  0 0 0 

- 0 0 0  0 0 0 

, (4.3) 

(4.4) 

The matrix f that appears on the right-hand side of (4.2) is a 6 x 6 matrix with 
elements which contain bl(e), db,/dO as well as O(p) basic flow quantities. These 
elements are given in the Appendix. 

A differential equation that governs the behaviour of the amplitude a,(@ can now 
be obtained by imposition of a solvability condition on equation (4.2). By this we 
mean that if equation (4.2) is to have non-trivial solutions, then its right-hand side 
must be orthogonal to the adjoint solution of the homogeneous equivalent of (4.2) ; 
this equation is the same as (4.1), thus it is sufficient to find adjoint solutions to (4.1). 
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If the governing equations (4.1)) (4.2) are considered in operator form by the 
introduction of the operator C given by 

a a C=/ - -A+B-- ,  
a7 a7 (4.5) 

and if Vis the adjoint solution of (4.1), then by virtue of C(q,) being zero we obtain 

VTC(q l )  = 0. (4.6) 

Equation (4.6) can now be used to obtain the adjoint equation, together with its 
solution, as follows. We integrate (4.6) with respect to 7 and 7 ;  the range of 7 is [0, co] 
(the whole extent of the Stokes layer) and that of 7 is [0,2n] since the basic flow is 
periodic with period 2n. Thus we obtain 

After change of the order of integration, and integration by parts, we have 

Equation (4.7), above, can be satisfied by choosing the components of Y ( E  = 1.6 
say) as follows. V,, V,, V, are taken to vanish at 1;1 = 0, 7 = 00 and V is taken to be 
periodic in T with period 2n, together with the adjoint equation 

C+( V) = 0, 

where 
a a 

C+ = /-+AT+BT-. 
a7 a7 

The periodicity condition on V is valid as we are only considering neutral solutions 
(cf. (3.4)). Thus the orthogonality condition on (4.2) described earlier yields 

211 jvYo I_, VTkzldTd7 = 0, (4-9) 

where Vsatisfies (4.8). This condition now leads to the following ordinary differential 
equation for b,(@ : 

(4.10) 

The functions J(8) ,  H ( 8 )  are double integrals over 7- and 7-space and are given in 
the Appendix. 

Thus far, we have identified the evolution equations for the leading-order and O(B) 
perturbations and obtained a differential equation that describes the behaviour of 
the leading-order vortex amplitude. The calculations are performed at the critical 
value of the Taylor number T, (fixed for some 0) and wavenumber k(8). It should 
be noted that k(0) is complex for general 0 and due to its &dependence we would 
expect the vortices a t  some positions to have larger amplitudes than those in other 
positions. The complex k effect is expected to provide the decay of the vortex 
amplitude with 8 (it is in connection with these eigenvalues that the problem has to 

db 
d8 

J(e++H(o) b, = 0. 
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be resolved mathematically in the complex 8-plane; this is explained fully in the next 
section). Our aim is to identify where the largest vortex amplitudes first occur (in 
particular if they do so at the inner or outer bend of the pipe) and to calculate the 
critical Taylor number above which the flow becomes unstable. 

Suppose, for definiteness, that instability first sets in at the outer bend 8 = 0 (such 
positions are in fact found to be more unstable by our numerical calculations 
described in $56 and 7). It is important, therefore, to analyse the behaviour of b, near 
8 = 0. In order to fix the neutral k and T, at 8 = 0, it is convenient to expand these 
quantities in power series in 8 (for 0 Q 1) and consider leading-order quantities. Thus, 
for 8 << 1, we write 

k = k, + Bk, + 02k, + . . . , (4.11) 

T, = ~ + e 2 ~ + o ( e 4 ) .  (4.12) 

The form of the expression for T, follows from the fact that near a critical point of 
the marginal stability curve, (q, k,) say, T, has a minimum as a function of k and 
so %-To - (k-k,),. The matrix A and the vector q1 expand as follows: 

A = z,+ ex, + e2z2+. . . , (4.13) 

41 = 410+~41,+82q,,+...  . (4.14) 

If we now substitute (4.11)-(4.14) into (4.1) and equate coefficients of successive 
powers of 8, we obtain 

OV) :  Co(q10) = 0, (4.15) 

O ( @ )  : Co(q1,) = %410, (4.16) 

where C, denotes the operator C evaluated at 8 = 0. Thus for non-trivial solutions 
of (4.16) to exist we must satisfy the following orthogonality condition, 

(4.17) 

where Cb( V,) = 0. If we now write V, = (h1, VO2, VO3, Vo4, Vo5, V,,JT, it follows from 
(4.17) that 

k, = M / N ,  
where 

M = Sm 1'' (ik, v,, iilo - 2 ~ ,  j,, v,, ii,, + 2iko f, vO2 q0 
r/=o z = o  

+4wB0 Vozd,,+2ik,~f, h3tZ10)d~dy, (4.18~) 
r m  ran 

- 2k0 V,, Glo - iV,, 'u",,] d7 dy. (4.18b) 

Now the condition that is a minimum as a function of k,, with k, real, may be 
obtained by differentiating (4.15) with respect to k, and setting i3z/ako = 0. This 
gives 

c, (:;)-E, - - 2 q  10' (4.19 a) 
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Hence for non-trivial solutions of (4 .19~)  we require 

(4.19b) 

When the condition (4.19b) is written out in full, it  is seen to be identical to the 
expression (4.18b) for N. Thus we conclude that N = 0, and hence the expansions of 
k and 4 in powers of 8 about k,, ql0 are not regular. Such behaviour was also found 
by Walton (1978) in his investigation of the stability of the steady flow in a narrow 
spherical annulus. An alternative expansion that does not produce singular behaviour 
in k, is found to proceed in powers of 6. We write 

(4.20) 

It should be noted here that although the quantities ko, ql0, a,, and V, are the 
same as those occurring in the expansions (4.10)-(4.13), the terms at  O(&) and higher 
are of course not equivalent to the O(6)  and higher terms in (4.1 1 )-(4,14), even though 
the same notation has been used. 

Substitution of the expansions (4.20) into (4.1) yields 

O(W: Co(q10) = 0, (4.21 a) 

o(m : Z1 CO(411) = 4 410, (4.21 b) 

(4.21 c) 

The condition that (4.21 c) possesses non-trivial solutions gives an equation for i i  in 
terms of k,. This is 

i: = - MJN,, 
where 

f 
kl 

o(e) : Co(412)  = -2 CO(411) + f1  A 4 1 1  + A 2  410. 

211 

= Jm 9 = 0  J 7 = O  [ & ~ , , ( ~ ~ % f 9 ~ 1 0 ) +  &2(-2~' ,99Q10+2ik0~' , f9'10+4WB02?)10)  

+ V,3(-2w~09~Qlo+2ik,~' ,9dl , ) ]d~dr] ,  (4 .22~)  
03 2K 

N 1  = J9=o J7=, [ &1(i%0-~i'119 + kO '11) + &2('10+ 2i@11 +2k0 '11) 

+ V,3(diO + 2k0 dll) + i V,, gll] d7 dr]. (4.22 b) 

The behaviour of b, as 8+0 can now be examined. To do this the coefficients J(O), 
H ( 0 )  of the amplitude equation (4.10) are expanded in powers of 64. These expansions 
are (see Appendix l) ,  

J ( e )  = J ,  + etJl + o(e), (4 .23~)  

H(e)  = e-tHo+o(i). (4.233) 

8 PLI 182 
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It is found that Jo is equivalent to the expression (4.18b) for N and by (4.19b) is 
therefore zero. Next we obtain 

J1 = Jm j z n  [ I ,  vOl( - glgg - ik, c,, - iClo) + 28,  hZ($,, - ik, v",, - ic,,) 
q = O  7 = 0  

-2iIl ~ 3 ( k o 6 1 1 + ~ 1 0 ) + ~ 1  ~ , G , , - I ,  ~ l ( ~ l o g + ~ o i i l o )  

+ 2E, V,,( fjlo - ik, Glo) - 2ik0 V,, Glo I ,  + I ,  V,, GlO] d7 dg, ( 4 . 2 4 ~ )  
2ff 

H ,  = J m  1 [ I ,  ~ l ~ - ~ l ~ g - ~ i ~ l o - + i ~ o i i l l ~ + i l  ~ z ( ~ l l - ~ i i j l o - i ~ o ~ l l )  
g=o 7 = 0  

-iIl & 3 ( ~ 6 1 0 + k o ~ , , ) + ~ ~ 1  &'oaV"ll]d7dg. (4.24b) 

We can now show that Ho is a multiple of Jl. To obtain this linear relation, we consider 
the adjoint equation (4.7).  If we use the expansions (4.20) near 8 = 0, we obtain the 
following equations a t  successive powers of e:. 

o(e0): CJ(V,) = 0, (4.25 a) 

(4.25 b) 

(4.25 c) 

For non-trivial solutions of ( 4 . 2 5 ~ )  the following condition must hold : 

"J* J" [ Vll( -~iV"log + ko C,,,) + 2 V,,(iplo + k, Cl0) + 2k0 V,, Glo + i V,, ijlO] d7 dg 
g=o r = O  

= - J m  [ ikoqj ,  u,, v,, + 2 v,,( -~j,, cl0 +iko%jq cl0 +2wB0 
g=o 7 = 0  

+ h3( - wBOg ? %O + jk0 Tfg 'lo)] d7 dg 

- I ;  jm (fh, Clo + V,, ijlo + Vo3 Glo) d7 dg. 
g=o 7 = 0  

Substitution for i t  from (4.22a, b) into (4.26) yields 

(4.26) 

Ho = iJ l  
Thus as 8+0 the amplitude equation (4.10) can be written as 

(4.27) 

where yo, y1 are constants given by double integrals of the expanded quantities. As 
8+0, therefore, (4.27) has solutions which behave like 

b,(e) - 4 0-2 exp ((yl-yo) 8% (4.28) 
where is a constant. 

Equation (4.28) shows that b, becomes singular as 8+0.  A natural assumption 
would be that this singularity can be smoothed out by a rescaling of 8 and a formation 
of an inner expansion near 0 = 0. It turns out, however, that such a procedure leads 
to unacceptable results which can only be resolved by the analytic continuation of 
the solution to  the complex &plane. The need for such a procedure, together with 

db 
d€' 

2 ( 0 t + ~ , 8 +  ...)'+a( B-;+~,+ ...) b,  = 0, 
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the solution that overcomes singular behaviour on the real @axis, are given in the 
following section. 

It should be noted here that the analysis just carried out is also valid in the 
neighbourhood of 8 = R (inner bend), by a slight modification of the elements of the 
leading-order matrix A,,. 

5. The inner solution 
The remarks made at the end of the last section on the need for the solution to 

be considered in the complex &plane can now be clarified. First of all it must be noted 
that this is required because of the properties of the asymptotic solutions, which 
imply that a scaling of 8 on the real axis does not achieve the correct results. As can 
be seen from the expansions (3.3), and more specifically the exponent of the 
exponential near 8 = 0, the leading scales to be reconsidered on the real axis are 
8 = O(@) and 0 = 0(/3). This procedure was adopted by Walton (1978) in the narrow 
spherical annulus problem, after the assumption that the critical Taylor number at  
the equator is the same as that for the corresponding Taylor-cylinder problem. The 
equation that determines the evolution of the leading-order vortex amplitude is then 
found to be an Airy equation, which has solutions that decay at infinity but exhibit 
oscillatory behaviour at minus infinity. Such solutions are unacceptable from a 
physical point of view; the problem was resolved by Soward & Jones in 1983. We 
now describe briefly the development of their method applied to our problem. 

The main aim in problems of this kind is to obtain a dispersion relation for the 
Taylor number which can then be calculated by fixing some quantities while varying 
others. This dispersion relation takes the form 

T = T(k, 8 , ~ )  + O(P), (5.1) 

where u is a growth rate (in our case obtained by the Fourier analysis of solutions 
in time) and k, 8 are as defined earlier. The Taylor number T can now be regarded 
as a function of the three complex variables k, 9, u but it must of course remain real 
and constant for all 0 in a physical flow (e.g. experiments where it is fixed). It can 
be shown that at a minimum of T the following conditions must hold, 

The above conditions are satisfied if 

Tk = To = 0. 

The necessity of satisfying the conditions (5.2) is crucial in the analysis if physically 
acceptable solutions are to be found. In  a lot of problems these conditions are satisfied 
on the real axis of 6 (as in Hall 1984, for example), but it can be seen that complex 
values of 8 are also permissible. Mathematically, if Tk = To = 0, the amplitude 
equation for linear perturbations turns out to be a parabolic cylinder equation (see 
Hall 1984), which has solutions that decay exponentially as 00. If To =l= 0, 
however, as is the case for the narrow spherical annulus Taylor problem studied by 
Walton, and Soward & Jones, the resulting amplitude equation is an Airy-type 
equation which does not provide the correct solutions. It should be noted that both 
the amplitude equations mentioned above arise after a normal mode analysis in time, 
or in the case of a time-dependent basic flow (as in Hall 1984 and the present paper) 

8-2 
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by a Fourier expansion in time. The mathematical details, and scalings involved on 
the coordinates that governs the vortex strength, can be found in Soward & Jones 
(1983). 

The important feature that follows from problems like our curved-pipe flow or the 
flow in a narrow spherical annulus, is that acceptable solutions that describe the 
vortex amplitudes at the critical Taylor number (or, conversely, the correct solution 
of the eigenvalue problem that determines the critical Taylor number above which 
instability occurs), can only be found if solutions are considered at the saddle point 
of T, where Tk = To = 0 (to use our notation). As the saddle point is not on the real 
axis we must search for it by continuing the solution into the complex plane of 8. 
When such a point is identified, the solution in its neighbourhood is not just an inner 
solution that smooths out the singularity found on the real axis, but provides a set 
of asymptotic solutions that match with ones valid away from the saddle point and 
which describe the flow (in the limit /3+0) for all real values of 8 as well. The 
eigenvalue problem, together with the search for the saddle point, and consequently 
the identification of the correct value of T, must be solved numerically. Before this 
is done we describe the solutions in the neighbourhood of the saddle point (‘inner 
solutions’) and show that they form rational asymptotic solutions in the limit D+O. 
This is desirable if we are to illustrate that the remarks made earlier are consistent 
with the analysis. 

Suppose, therefore, that the position of the saddle point is at  8 = 8,. We wish to 
study symmetric modes, in this case modes symmetric with respect to 8. It follows 
that 

(5-3) Re (8,) = Im (k,) = 0. 

The first relationship in (5.3) above follows from the symmetry of the problem. With 
this in mind, i t  can be seen that the leading-order governing equations (see equations 
(6.2a, b) of $6 which follow from (4.1)) have real coefficients if Im (k,) = 0. 

If we consider asymptotic solutions to the problem of the WKBJ type (cf. (3.3) 
also), we can write down two linearly independent ones of the form 

These solutions provide good approximations to the exact solutions when the limit 
/3+0 is taken, provided that 8 is not near a transition point where k(8)  vanishes. As 
there are no transition points of k(8)  on the real axis, it might be assumed that q+ 
provides an asymptotic solution for the problem. The error associated with this 
solution as compared to the true one is O(B) times the asymptotic solution (i.e. 
0(/3q+)). As 8 varies in the complex plane, q+ is a valid solution provided that the 
error associated with it remains 0(/3) times q+ . It is found, however, that as 8 varies, 
a domain is encountered where the error is no longer O(&+) but changes to 0(/3q-). 
In this region the error now becomes exponentially large compared to the original 
asymptotic solution q+ and so q+ is no longer a valid solution here. The boundaries 
across which such a change takes place are the anti-Stokes lines; the reason that they 
are present in the description of solutions that are strictly continuous is due to the 
asymptotic representation and the errors associated with that. For a full description 
of phase-integral methods refer to Heading (1962). 

In order to resolve the difficulty and identify the correct asymptotic solutions, the 
transition points from which the anti-Stokes lines emanate must be found. The 
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RQURE 2. An illustration of the various domains into which the complex @-plane is divided. The 
inner solution has a domain of validity inside the circle of radius O@), and the dominance or 
subdominance of the outer WKBJ solutions depends on the regions R,, R,, R,, R,. 

problem posed by (4.1)-(4.4) is an eigenvalue problem which has a solution only when 
an eigenrelation of the following form is satisfied: 

(5.5) 
The dependence of P on k, 8, T follows from the search of neutrally stable solutions 
(growth rate = 0) and by a Fourier analysis of solutions in time. This is clarified 
further in the next section. 

It can be seen from the conditions (6.2) that Tk = 0 implies a repeated root of (5.5) 
at 8 = 8,. This root is taken to be 

(5.6) 
Hence, the point P(8 = 8,) in the complex &plane defines a transition point in whose 
vicinity the WKBJ solutions (3.3) become identical. The other condition, To = 0, 
implies that in the limit p+O the transition points coincide at 8 = 8,. This property 
indicates that there exist anti-Stokes lines that divide the complex &plane into four 
regions. They are defined by 

F(k, 8, T) = 0. 

k(')(8,) = k@)(8,) = k,. 

There are also distinct Stokes lines defined by 

(5 .7a)  

(5.7b) 

We have not calculated the exact shape of the Stokes and anti-Stokes lines from 
( 5 . 7 ~ )  b), but in figure 2 we present a schematic of how the complex &plane is divided 
up by the Stokes and anti-Stokes lines (see also Soward & Jones 1983). 

Our concern is with symmetric modes, so the Stokes line PS is along the imaginary 
&axis while the anti-Stokes lines PP-, PP+ meet the real 8-axis at F ( 8  = -el), 
P+(8 = 8,) respectively. As explained earlier, if the two solutions ql, qa are considered, 
corresponding to k( l ) ,  k@) respectively, one solution is expected to be dominant in 
the regions R, + R4 and subdominant in R, + R,, while the other solution is dominant 
in R, + R, and subdominant in R, + R4. An asymptotic solution which approximates 
the true solution uniformly along the real &axis can be found by incorporating a 
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Stokes constant 5 say; the solutions now become (see also Heading 1962; Soward & 
Jones 1983) 

4 = 41 (8 G 01, ( 5 . 8 ~ )  

4 = 41-54, (8  > 0). (5.8b) 
Other WKBJ solutions that correspond to roots of (5.6) other than k(l), k@) are not 
required in the construction of (5.9a, b )  above, because these solutions are not related 
to the transition point 8 = 8,. Thus, if we are to approximate the solution on the 
real 6-axis by q = q1 the requirement is that 6, which is a function of the Taylor 
number, must be zero. The disturbance then takes its maximum value at the point 
S shown in figure 2. The value of C is determined by obtaining an inner solution for 
l8-8,l = O(P4) and matching with the outer solution. Now, the asymptotic solutions 
(5.4) are valid for complex values of 9, provided that l6-8,l B Pi, and they govern 
the matching with the inner solution. 

We now present the construction of an inner solution; this serves as a check on 
the analysis presented so far, as well as being a prerequisite for nonlinear evolution 
of disturbances. An inner variable 0 = 0(1) is considered, defined by 

The perturbation vector q is expanded in powers of Pi as follows: 
6-8, =pis .  (5.9) 

4 = dl( 0) E+ /?id,( 0) 4, E + Pd3( 0) 4, E + . . . + c.c., (5.10) 

where E = exp [ik, 0//34]. The form of E follows by consideration of the more general 
solution (3.3) near 8 = 0,. Substitution of (5.9), (5.10) into the governing equations 
(3.2a-d) yields a t  O($) 

841 - 0, (5.11) 

where A, is the matrix A (given by (4.3)) evaluated a t  9 = 8,, k = k, and B is the 
matrix (4.4). Next, a t  0(/3+) we obtain 

ad - 
/ ~ - - A 0 f j 1 + B -  - 

a7 a7 

-0 0 0 ik,T, f,,cos9, 0 
0 0 0 -2% f,,,,co~8, 2ik,T, f,,cos8, 
0 0 0  0 0 
0 0 0  0 0 
0 0 0  0 0 

-0 0 0 0 0 

The matrices M,, M,, M3 are given by 

0 O l  
0 -; 0 (T, fqsin8,-ik,) 0 
2 0 0  0 2(T, f, sin 8, - ik,) 
0 0 0  0 0 
0 0 0  1 0 
0 0 0  0 0 
0 0 0  0 0 

M, = 

2(T,  f,, sin8,-ik0) I 

J ’  0 
0 
0 

( 5 . 1 3 ~ )  

(5 .13~)  

1 
2w,, sine, 
4w,, coa8, 

0 
0 
0 

2 ikO%fq  c0s90 , (5.13b) 
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We can now find a solution to (5.12) by writing 

d ,  gz = -idle &') + 8dl #i2) + d, qi3), (5.14) 

where gf), @), 4i3) are to be determined. Substituting (5.14) into (5.12) and picking 
out coefficients of die, q d ,  and d ,  yields equations for @I, @), Q!f) respectively. If 
we denote the operator C, by 

( 5 . 1 5 ~ )  
A a -  a c, = /--A,+B-, 

a7 a7 

(5.15b) 

(5 .15~)  

(5.15d) 

In (5.15b-d) above the subscripts ko, 8, denote partial differentiation with respect 
to k,, 8, respectively and a subscript zero means evaluation of quantities at 8 = 8,. 

At the next order, 0(/3), the equation for a3 is found to be 

d3(@) C o ( 4 3 )  = dlee[M(')al+ M(2)4'r)] 
+ @d,,[N(l)& + N(2)@) + N(3)&2)] + dl[P1)gl + f13)4p) +f14)ij!f)] 
+ dle[R(l)dl + R(2)qf) + R(4)4p)] + @dl[S(l)Bl + s(3)QF) + s(4)Qi3)] 

+ e2d, [ Q(l)gr + Q(3)df ) ] .  (5.16) 

In obtaining (5.16) we have used the solution (5.14) for 4,; A#*), N(*), PCO, R(*), St), 
Q(') for i = 1,2,3,4 are 6 x 6 matrices which need not be given here. 

If (5.16) is to have non-trivial solutions, its right-hand side must satisfy an 
orthogonality condition, which yields an equaiion for the amplitude dl (  8). Associated 
with the operator Co is an adjoint function V and the adjoint equation 

Ci( V )  = 0. ( 5 . 1 7 ~ )  

In ( 5 . 1 7 ~ )  above, Ci is given by (4.8) evaluated at k,, O0, i.e. 

(5.17b) 
a -  a ex = / -+A~+BT- .  
a7 a7 

Thus the amplitude equation for d ,  is 

/ M  dlee + I N  8d1e + / p  d ,  +/R d1e + I s  8 d 1  + / Q  e 2 d 1 =  0, (5.18) 

where I M ,  I N ,  / p ,  / A ,  Is, /Q are double integrals; a typical one is IM for example, given 
bv 

Equation (5.18) has solutions of the form 

d,(8) = e-"e'P(0), (5.19) 

where P(@)  is a Hermite polynomial and di is a suitably chosen real constant. The 
exponential factor in (5.19) gives the required behaviour as 181 --f 00. 

The analysis in this section seems at first to produce solutions that are valid in the 
complex plane and not on the real axis; this in fact is not true. As we have seen, it 
is crucial to find the saddle point where Tk, To vanish, even if this means accepting 
complex values of k and 0. So when such a point is identified, an inner solution in 
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its neighbourhood (note that 8, is not located close to the real axis but at  O(1) 
distances from it, as the numerical calculations show) is constructed, which is then 
matched onto the asymptotic solutions (3.3) valid elsewhere. As was argued earlier, 
the Stokes constant 5 (cf. (5.9a, b)) connects the solutions on the real axis for 8 > 0 
and 8 < 0. In the numerical search for the saddle point and the subsequent 
minimization of the Taylor number, the Stokes constant is reduced to zero. Thus, 
the solution q1 now forms a uniformly valid asymptotic approximation to the true 
solution on the real axis and is therefore the eigenfunction for the physical problem. 

6. Numerical solution 
In  this section we describe the numerical method used to solve the leading-order 

eigenvalue problem (4.1) subject to the boundary conditions of no slip at the wall 
and decay of disturbances at infinity. As described in the previous section, the 
eigenvalue problem (5.5) must be solved and the values k,, 8, that make Tk, To vanish, 
identified. Our concern is with neutrally stable modes, so the growth rate CT is 
identically zero. Thus, for fixed values of k and E (note that 8 =  it ,  cf. (5.3), for 
symmetric modes), the eigenrelation (5.5) is solved to find a value of T. The correct 
value of T that corresponds to the physically acceptable solutions above which 
instability occurs, is found when the point (k,, 8,), where Tk = To = 0, is located. 

The undisturbed flow is periodic in time, so on the basis of Floquet theory we 
assume a Fourier expansion in time for the disturbances (that is, the disturbances 
are taken to be periodic in time) and any exponential growth is absorbed into the 
complex frequency 52 (see (6.1) below); for neutral solutions, however, = 0. So, we 
expand the leading-order perturbation velocities in the radial and azimuthal 
directions respectively, in the form 

03 

(G,, 65,) = G e-inT X (u,, w,) ein7+C.C., (6.1) 
n---cQ 

where the u,, w, are functions of 7 alone. G is a constant and 52 = 0 for neutral modes. 
If we now consider the leading-order governing equations (4.1), ij1 can be eliminated 

by use of the continuity equation, and when the pressure j3, is eliminated the following 
coupled partial differential equations are obtained for 2, and d, : 

a 2  a a 2  (v- k2 - 2 -) a7 (-- a72 k2) G, + 2ikq(k2vB, + vBwq) G, - 2ikq vBo G,,, 

-44k2W~,d1 cos8-4ik sin8(wBo,,d,+wBOd111) = 0, ( 6 . 2 ~ )  

(6.2b) 

Substitution of (6.1) into (6.2a,b) leads to an infinite set of ordinary differential 
equations for the u,, w, obtained at  successive powers ein7. The method of solution 
is to retain a suitable number of Fourier modes in (6.1), thus reducing the infinite 
set of equations to a finite one. By a numerical scheme the equations are integrated 
using as initial condition one of the boundary conditions of the problem; for 
convenience the condition at ‘infinity’ is used. A number of independent solutions 
are needed so that a linear combination of these satisfies the boundary condition of 
no slip at 7 = 0. This yields a finite set of homogeneous algebraic equations which 
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has a non-trivial solution if the determinant of the coefficients of the combination 
is zero. The evaluation of the determinant provides a value for the function P(k, 8 ,T)  
(cf. (5.5)) which for given values of k , 8  and T is generally non-zero. Hence the 
eigenrelation (5.5) can be satisfied by finding values of T which are roots of the 
equation (5.5). This is done by a secant method. 

The method described above is a modification of the techniques used in relation 
to boundary-value problems in hydrodynamic stability by, for example, Krueger, 
Gross & DiPrima (1966) and Seminara t Hall (1976). 

Integrations that determine each independent solution are carried out starting at  
some large value of 7, T~ say. The value of roo at which we can impose zero velocity 
on GI, GI, is in general too large to make it feasible for a modest numerical scheme; 
this can be avoided by using as initial values at qco, solutions for u,, w, obtained from 
(6.2a, b) after exponentially small terms have been dropped. This technique is 
discussed in detail by Keller (1968). 

7. Results and discussion 
Our objective is to find the minimum value of T, on the neutral stability curve of 

T, against k,. With Q = 0 and k,, 5, (8  = it,) fixed, an initial guess is made for T, and 
the value of the eigenrelation determinant (see $6) is calculated. A small increment 
is given to T, and the new value of the determinant is found. By use of the secant 
method the value of T, which is a root of the eigenrelation is determined. This is 
repeated for a range of values of k, and 6, in order to locate the points where 
aT,/ak, = aT,/a8= 0. The number of Fourier modes retained was a result of 
numerical experiments, as was the value of qrn and the step size. We used two, four 
or six Fourier modes, and qco = 10. Forty steps divided the strip [0,7,] uniformly, 
and the independent solutions for each Fourier mode were calculated by use of a 
fourth-order RungeKutta method. For each Fourier mode n, there are three 
independent solutions at infinity and so the determinant to be calculated has size 
39 x 39. Its value was evaluated by use of NAG subroutines. Convergence of the 
secant method was very good provided some limitations on the values of to were 
observed. An estimate of these can be obtained by consideration of the fundamental 
mode in (6.1). For large 7, dropping exponentially small terms, the equation for w, 
is, from (6.26), 

[$-(k:-'jk,T,sin8) 1 w, = 0. 

If 8 = it,, (7.1) has decaying solutions for large 7 if and only if 

2kO 
T,' 

sinh to > -- 

At the inner bend, 8 = x+iEo, we require 

(7.2a) 

(7.2b) 

Initially the neutral stability curves of T, versus k, were calculated at 8 = 0 and 
8 = A (outer and inner bends respectively) in order to provide an indication as to the 
position of the onset of instability. The results are given in figure 3. It is seen that 
the minimum critical Taylor number (for real 8) is lower at the outer bend. 
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I n  order t o  locate the saddle point a t  the outer bend, the value of f ,  was increased, 
and the minimum Taylor number was found by calculating T, for a range of k,. The 
value of T, was noted, f ,  was increased further and the process was continued until 
To reached a maximum; that is until the point where aT,/ak, = aT,/aB = 0 was 
located. The saddle point occurred at f ,  = 0.3526, and T, = 10.731, k, = 0.5308 there. 
Figure 4 shows the variation of Tornin with f,. 
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FIGURE 5. Inner bend. Variation of log(T,,,,) with to(@ = %-ito) 

40 

To conclude that instability of the form studied here first sets in at the outer bend, 
it must be shown that the value of T, at the saddle point, if it exists, in the vicinity 
of the inner bend is higher than that at the outer bend. Calculations were carried out 
at the inner bend, therefore, in an attempt to establish this. These calculations were 
carried out for negative values of to, thus satisfying the condition (7.2b) automati- 
cally. Small enough positive values of 6, also satisfy (7.2b) but these were found to 
produce a decrease in the value of Tomin, indicating that we should concentrate on 
the negative axis of 5,. The solutions so obtained, however, did not reveal a turning 
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FIGURE 7. Inner bend. Variation of Tomin with [,(e = rr-iEo). 

point in the complex plane of 8. Instead, solutions were picked up that had 
T, - exp (al6,I) as 1[,1 increased. This is indicated by the log-linear plot of Tomin 
against ltol in figure 5.  The wavenumber on the other hand, decayed exponentially 
according to k, - exp ( -a,ltO1); this is indicated by the log-linear plot of k, against 
I[,I in figure 6 (al,a2 are positive constants). In figure 7 we show the behaviour of 
Tornin with Igol. These results suggest, therefore, that instability of the form considered 
here is not found at the inner bend. 

7.1. Applications to blood flow 
The problem studied here is of interest in the understanding of the fluid mechanics 
that operate in the cardiovascular system, where the flow of blood in the large arteries 
is unsteady and is characterized by large values of R,. Typically, in the human aorta 
R, ranges between lo8 and lo4 and in the canine aorta R, x 4000. In blood flows like 
the ones cited above, the observed value of /3 is small (0.08 for the ascending aorta 
in humans) and the amplitude of the unsteady oscillatory component of the flow is 
at least as large as the mean component; this latter fact is an important charac- 
terization of blood flow. Our analysis is not inconsistent with these facts. Data for 
S give it a value of about 0.2. When the limit S+-0 is taken, the physics of the flow 
is probably not changed significantly and the study of such limit problems is of value 
to blood-flow investigations. 

We have analysed the stability of Lyne's flow, which has a pressure gradient with 
zero mean. Usually the pressure gradient, in physiological flows, has a non-zero steady 

Y - ,a",--, ..ll"L" u 1u U l l "  .."L. """III.y""L 

D, Lyne's flow is the leading-order solution. In blood flow in the canine aorta, for 
example, D x 2000 as well as R, being large. The case D, R, % 1, /3 4 1 is therefore 
important. To be consistent with blood flow, the amplitude of the unsteady part of 
the pressure gradient must be larger than the mean steady component. This implies 
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W w / C  1, or Ripd3 B D (in our problem B-' - R, and so we need D 4 Ri). Pedley 
(1980 $4.2.2) suggests the ordered scaling 1 4 B-' Q D < R, in view of observational 
data. This ordering is violated in our problem, since R, - 8-l. Blennerhasset (1976), 
however, took the limit B+O and looked at the cases D < R, which make the problem 
physiologically reasonable. The flow now has a Stokes layer on the tube walls and 
the solutions inside the Stokes layer are those given by Lyne's leading-order terms 
and whose linear stability we have calculated here. As an aside, we mention that the 
physically important case occurs when the direction of the centrifuging (secondary 
steady streaming) changes from being outwards to inwards. This transition occurs 
when R, = O(Df) (found when contributions to  the secondary streaming due to a 
steady pressure gradient balance those due to the flow driven by a Stokes layer with 
zero mean pressure gradient). The reason for the importance of such a regime is that 
from a physiological point of view we need to predict the wall shear stresses and the 
axial velocity in the core. Smith (1975) has studied this and a number of other limits 
theoretically by means of asymptotic techniques. 

If we use the data for the canine aorta to calculate the Taylor number for the flow, 
we find it to be approximately 165. This implies that the flow is linearly unstable, 
at the outer bend, to disturbances of the type considered here. Observations on blood 
flow are not conclusive as to whether the flow is laminar or turbulent, but varied flow 
regimes are reported instead. It is not a straightforward matter to make a direct 
correlation between atherogenesis (deposition of fatty substances on arterial walls) 
and the fluid dynamics, due to the complicating biochemical factors present. There 
is evidence, however, that links the distribution of fatty streaks with shear stress 
distributions at the vessel walls. 

For example, it is observed that in normal diets fatty streaks are usually deposited 
at  the inner walls of curved arteries. A reason attributed to this, which is consistent 
with our results, is that due to the high shear at the outer bend (unstable flow here) 
the permeability of the vessel walls increases and fatty molecules have a chance of 
being diffused out of the plasma. A t  the inner bend, however, this is less likely to 
happen, and deposition takes place. There are other factors to be considered before 
this theory is rendered complete, and for a full discussion on atherogenesis the reader 
is referred to Pedley (1980, chapter 1)  and Lighthill (1975, chapter 13). 
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Appendix 
The functions J(@,  H ( 8 )  in the amplitude equation (4.9) are given by 

r m  ran 
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Thus, the expansions for small 6 are 

J ( e )  =JO+eiJl+ ..., 

H ( 8 )  = e-!~,+o(i), 
where Jo, J1, Ho can be found by substituting (A l a ) ,  (A 2a) into (A l ) ,  (A 2) and 
picking out powers of 04. 

The 6 x 6 matrix L in equation (4.2) has non-zero elements given by, using the usual 
matrix notation, 

a db, 
L4, = b -+-. lae de 
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